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Abstract

Parameter and state estimation techniques are discussed for an

elliptic system arising in a developmental model for the antenna surface
in the Maypole Hoop/Column antenna. A computational algorithm based on
spline approximations for the state and elastic parameters is given and
numerical results obtained using this algorithm are summarized.

I. Introduction

This report summarizes some of the results from an ongoing Langley
Research Center program directed towards developing parameter estimation

techniques for flexible systems modeled by partial differential equations
with an emphasis on large space structures. The intent of the program is
to produce general purpose techniques with a sound theoretical basis which
are computaclonally effclijIt while contributing to Langley's technology
development program in large space antennas [I]. Of the many techniques
available for paraneter estima tlon in distributed systems (for example,
see (2]) the spline ba;ed estimat ,-n techniques of t3-8] appear well
suited for large space structures applications and are currently being

developed to treat this class of pro'.i..ms. Simultaneously. an estimation
problem associated with the Mavpole (Hoop/Column) antenna [9] is being
formulated and will be solved as part of the developmental process. The
next sLction of this paper describes the Hoop/Column antenna and presents

-,7 ,. v .. ,,; .:,.,. ... . . . .. . ... ., .-..; .. . . . . . . . . . . . . . . .
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the identification problem being considered. The parameter estimation
approach is then outlined and discussed in the context of the Hoop/Column
application. Subsequent sections include mathematical details of the
antenna application and numerical results.

II. The Maypole (Hoop/Column) Antenna

* One of the planned activities of NASA's Space Transportation
System is the placement in earth orbit of a variety of large space anten-

• ,nas. Potential large space missions for the next two decades will require
antennas and structures ranging from 30m to 20km in size. Applications
include communications (mobile, trunking, etc.), remote sensing (soil
moisture, salinity, etc.), deep space network (orbital relays), astronomy
(x-ray observatory, optical array, radio telescope, very long baseline
interferometry, etc.), energy, and space platforms.

For the purpose of technology development, the NASA Large Scale
Systems Technology(LSST) program office has pinpointed focus missions and
identifled future requirements for large space antennas for communications,
earth sensing, and radio astronomy [1. In this study, particular empha-

-' sis is placed on mesh deployable antennas in the 50-120 meter diameter
*. category. Comunication satellites of this size will require a pointing

accuracy of 0.0350 and surface accuracy of 4-8mm. One such antenna is the
Maypole (Hoop/Column) antenna shown for the 100m point-design in Figures
1 and 2. This antenna concept has been selected by the LSST office for
development by the Harris Corporation, Melbourne, Florida, under contract
to the Langley Research Center [9).-t

* a

FIGURE I Side View of Maypole (Hoop/Column) Antenna

-4!

* 4 U -
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FIGURE 2 Maypole Hoop/Column Antenna Reflector Surface

The Hoop/Column antenna consists of a knitted gold-plated molybdenum
wire refleptive mesh stretched over a collapsible hoop that supplies the

rigidity necessary to maintain a circular outer shape. The mesh grid can
be varied to meet a given radio frequency reflectivity requirement. The
,annular membrane-like reflector surface surrounds a telescoping mast which
provides anchoring locations for the mesh center section (Figure 1). The
mast also provides anchoring for cables that connect the top end of the
mast to the outer hoop and the bottom end of the mast to 48 equally spaced
radial graphite cord truss systems woven through the mesh surface 19].
Tensions on the upper (quartz) cables and outer lover (graphite epoxy)
cables are counter balanced to provide stiffness to the hoop structure.
The inner lower cables produce, through the truss systems, distributed
surface loading to control the shape of four circular reflective dishes
(Figures 1 and 2) on the mesh surface. Flat, conical, parabolic, or
spherical dish surfaces can be produced using this cable drawing technique.

After deployment or after a long period of operation, the reflector

surface may require adjustment. Optical sensors are to be located on the
upper mast which measure angles of retroreflective targets placed on the
truss radial cord edges on the antenna surface. This information can then
be processed using a ground-based computer to determine a data set of
values of mesh surface location at selected target points. If necessary,

a new set of shaping (control) cord tensions can be fed back to the
antenna for adjustment.

It is desirable to have an identification procedure which allows one
to estimate the antenna mesh shape at arbitrary surface points and the
distributed loading from data set observations. It can also be antici-
pated that environmental stresses and the effects of aging will alter the

mesh material properties. The identification procedure must also allow
one to address this issue.

The authors are currently developing identification procedures for

use in distributed parameter models of the mesh surface. Considering the
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antenna to be fully deployed and in static equilibrium, we are deriving a
mathematical model which describes the antenna surface deviation from a
curved equilibrium configuration (for preliminary findings, see [10)).
Using a cylindrical coordinate system with the z axis along the mast, it
is expected that the resulting model will entail a system of coupled
second order linear partial differential equations in two spatial vari-
ables. The coefficients of these equations are functions of the material
properties of the stretched mesh. The derivation and computer software
for this model are still under development. In the meantime, a simpler
developmental (prototype) problem has been solved which is descriptive of
the original problem and for which the software produced will hopefully
be readily extended for use in the more general case.

For the developmental problem, the loading is assumed to be normal to
the horizontal plane containing the hoop rim and the mesh surface is
assumed to be described by the static two-dimensional stretched membrane
equation [11] with variable stiffness (elastic) coefficients and appro-

'4 priate boundary conditions for the Hoop/Column geometry. Mathematically,
in polar coordinates, we have

I 'u u] - fE~r,)

- l-~- [rE(r,e) [E(r,) - f(r,) (1)
r ~ ~ 3 38.a a* r

where u(r,8) is the vertical displacement of the mesh from the hoop plane,
f(r,e) is the distributed loading force per unit area, and E(r,8) > 0 is
the distributed stiffness (elastic) coefficient of the mesh surface (force/
unit length). Equation (1) is to be solved over the annular region
* - [c,R] x[0,2w]. Appropriate boundary conditions are

u(C,8) - u0 (2)

u(R,e) - 0

along with the periodicity requirement

u(r,O) - u(r,2w) , (3)

where R is the radius from the mast center to the circular outer hoop, e
is the radius from the mast to the beginning of the mesh surface (see
Figure 2), and u0 is the coordinate at r - e of the mesh surface below the
outer hoop plane.

We further assume that the distributed loading along with a data set
of vertical displacements, u(r1 'G)' at selected points (riej) on the

mesh surface is known. Given this information, the developmental problem
is to estimate the material properties of the mesh as represented by
E(r,6) and produce estimates of the surface represented by u(r,e) at
arbitrary (r,O) points within 0. The procedure applied to solve this
problem is discussed in the next section.

4
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Inl. The Parameter Estimation Approximation Scheme

The first two authors and their colleagues have derived techniques
for approximating the solutions to systems identification and control
problems involving delay equation models and partial differential equation
models in one spatial variable and have used them in a variety of appli-
cations [12, 13J. The Hoop/Column application requires an extension of
the theory and numerical algorithms to elliptic distributed systems in
several spatial variables. The approach, when specialized to the param-
eter estimation problem, may be sumarized as follows. (1) Select a dis-
tributed parameter formulation containing unknown parameters for a specific
system. (2) Mathematically "project" the formulation down onto a finite
dimensional subspace through some approximation procedure such as finite
differences, finite elements, etc. (3) Solve the parameter estimation
problem within the fliote dimensional subspace obtaining a parameter esti-
mate dependent upon the order of the approximation embodied in the sub-
space. (4) Successively increase the order of the approximation and, in
each case, solve the parameter estimation problem so as to construct a
sequence of parameter estimates ordered with increasing refinement of the
approximation scheme. (5) Seek a mathematical theory which provides con-
ditions under which the sequence of approximate solutions approaches the
distributed solution as the subspace dimension increases with a convergent
underlying sequence of parameter estimates.

In applying this approach to the developmental problem described in
this report, the stiffness function is parametrized in terms of cubic
splines; this converts the estimation of E(r,8) into a finite dimensional
parameter estimation problem. After writing the energy functional generic
to the membrane equation, we use the Galerkin procedure to project the
distributed formulation onto a finite dimensional state subspace spanned

.by tensor products of linear spline functions defined over 11. The approx-
imate displacement thus obtained is expressible in terms of the spline
basis functions. The Galerkin procedure in this case yields algebraic
equations which define the displacement approximation coordinates in terms
of the unknown parameters. In order to solve the approximating parameter
estimation problem, the parameters defining E(r,8) are chosen so that a
least squares measure of the fit error between the observed and predicted
(by the approximate state) data set is minimized. Finally, following
steps (4) and (5) an algorithm is constructed to determine the order of
the linear spline approximation above which little or no further improve-
ment is obtained in the unknown parameters as one increases the dimension
of the subspaces.

Following this procedure, a one-dimensional version of the develop-
mental problem has been solved [14] in which the schemes proposed were
successfully tested. We have subsequently considered the two dimensional
case and details of these investigations are presented in the following
sections.

IV. Finite Dimensional Approximations

We choose a Galerkin procedure [15, 16] with linear spline basis
functions to perform the finite dimensional approximation for the

! --. -- . - ,- ./ % -- . - ., ,-- - , -. -,-,-. .- .- ,, . - •., . , ,- . . ,;-
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developmental problem in which E(r,6) and u(r,6) of equation (1) are to be
estimated. The boundary conditions (2) are first converted to homogeneous
form by introducing the new dependent variable

- r-R
y(rO) - u(re) - ) u (4)c-R 0

whereby equation (1) becomes

- 1- a[rE(r,O) k]- [E(r, e) 22- f(r,6) +- 1 £IrE(r,B)u 0 1 5r 3r 3r rzae 38 r arR
r

with boundary conditions

y(Ce) - 0

y(R.0) - 0 (6)

y(r,O) - y(r,2w)

Following the standard formulation (see [15, 16]) for the weak or
variational form of (5), the energy functional f associated with (5) is

S(z) - f 2 E(r,e)Vz- Vz - ?(r,O rdrde , (7)
0 2 Z-

where V is the gradient in polar coordinates which, in the form used here,
is equivalent to

a 13 )T
'3r r -O • (8)

The function is given by

1 3 rE(r' B)u 0
f(r,8) = f(r,0) +-: - (- 7)- (9)

and the vertical displacement z(r,6) of the mesh surface away from the
hoop equilibrium plane is a function satisfying the boundary conditions
(6) and possessing first derivatives on 0 in the mean square sense (we

denote this by z H1  (2) - Z). The first variation 6E of E about the
Oper

function y(r,e) is given by

8E(y;v) - f f FE(r,)Vy. Vv - f(r,e) rdrde

2w R (',
- f f E(r,e)Vy. Vv-[f(r,e)v+ E(r,8)k. Vv rdrd6 (10)
0 €
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where

k --(n

and v is an arbitrary function in Z H,per()

Given a finite dimensional subspace Z of Z the Galerkin procedure
defines the approximation Y as the solution in Z of

f f.E(re)vy. V4 rdrde - f f -f(r,e)v+ E(r,e)k. V rdrd8 (12)
0 C 0

for all v Z.
For computational efficiency, the basis functions used for the repre-

sentations of y in (12) are taken as tensor products of linear B-splines
[15, p. 27; 16, p. 100]. Thus V^ and Y^ are in the space spanned by
M,N
vii , where

MN. M Nvij (r,e) - oii(r)0 (e). (i- l , . . M- 1 ;  J =i ., N), (13)

where a,- c(r), (i-l,...,H-l), and - (0), (j-1,...,N-), are

standard linear B-splines with knots uniformly spaced over [e,R] and

[0,2w], respectively. The elements (a I are modified to satisfy homo-
Nganous boundary conditions while ON has been altered to satisfy periodic

boundary conditions.
, M,N

For y (r,8) within the subspace spanned by viH, we can write
ii

yHN (-) N- M,N N (4
y[ yMN(r,e) = ci(r)wij 1 (e) (14)

:,,
Replacing y(r,e) in (12) by y 'N(r,O) from (14) and successively setting

v(r,)= v- , (r,6) for i-1,...,H-i and J-1,...,N leads to a set of
H, N

linear algebraic equations for the wji coordinates [17). For large M

and N, these equations may require sparse matrix techniques. We can avoid
sparse matrix methods by imposing a separability condition on E(r,e):

E(r,O) - E1 (r)E2 (e ) . (15)

M, NAs shown in [17], condition (15) reduces the wil calculation to the
solution of the matrix equation

-. r

be ''". . . . .
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A r + D W - ?a (16)

with

- (i ) (17)

0

H-rd M1

- ~~f 1  (r) ~ a(r) dr)~ rjr (9
= ( E 2(e)[.( r'(e) [] (21)

0

£Ix I ae) ! ON pe d r)e (21)

Rh aq MvW a M (r)

and

;m f2 f Rf(r,e)m M(r) N (8)rdrde
0

+ 2w (,, Re Edr I (rrdrde) (22)

where, In (17) -(22), i,pa and Jq -1...,N. The coefnf icient

matrices of iM In (16) have numerically attractive properties:

(i) all are symmetric, (ii) IM, N, and ?1are banded (tni-diagonal), and

(iii) ANand DP are positive defiaite.

Research to construct a numerical algorithm for solving (16) which
utilizes these properties is planned. At present, (16) is rewritten in
the equivalent form

+ WMNjN(N).)J (A) (A(0M(23)

and solved by the Bartels-Stewart algorithm [18].
In order to estimate, via a numerical scheme, the functional coef-

ficients E 1 and £ 21 we must further parametrize these functions so that

identification Is performed over a finite-dimensional (instead of an
Infinite-dimensional) parameter set. To this end, we let
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E1(r) I v kAk(r) (24)
.... k-1

N1

E2 (e) 1 j j (a) (25)

where Vk and 5 are scalar parameters and Ak and U are cubic B-spline

functions defined [15, p. 61] over [c,R) and [0,2wJ, respectively, whose
orders are independent of M and N. The functions have been modified so
that U i and its derivatives satisfy periodic boundary conditions. Sub-

stitution of (24), (25) into the matrices AN through P greatly simpli-
fies our computational efforts since many components of these matrices may
be computed one time only in advance of the estimation process.

We turn next to implementation of the parameter estimation scheme,
i.e., the numerical determination of vk, k-l, ... , Ml, and Sj, Jnl,

N1 , that appear in (24) and (25) and correspond to "optimal" values of the

parameters E1 and E2 •

V. The Parameter Estimation Algorithm

Appealing to the ideas found in previous sections, we mav now detail
an algorithm for estimating the coefficients vk' km, Mi.,Ml, and

Ji, •••, Nil for E(r,8) that provide the "best fit" between approxima-

tions for the state u and observed data u obtained from various samplem

points on the surface. We may equivalently consider data for y by making
the transformation

) _ ( u0ri R

Ym(ri,8iiu (ri~j e -- u (26)

for i=1, ...,L and J-1, L

We organize the parameter estimation algorithm inra the following
steps.

1. Select an order of approximation for the cubic spline elements Xk,

k =-1, ...,, -1 and j , OEL ..., Nil used to represent E1 and E2.'

Set n - i.

2. Select M and N, the orders of the linear spline basis elements used

to represent u M N (and yM,N).

3. Assume a nominal set of values for

A , P
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Vl-92' )" (27)
Nv - v1  2 , ... , VMI (7

and

a - (Sit a29 ' 6N • (28)

4. Calculate the coefficient matrices in (23) and solve for WN(v,6).

5. Calculate, from (14), yMN(ri,Sj; v,S) and evaluate

L LM
JNN(vS) - r 2 y'(,e vS -y(,OA(9

i-l J-1

6. Proceed to step 8 if JM N(v, 6) is sufficiently small. Otherwise,
through an optimization procedure, determine a new pair ( ,9) which
decreases the value of JM'N. If no such pair can be found, go to
step 8.

7. Set (v,S) - (v,6) and return to step 4.

8. Preserve the current values of JMN and the corresponding Cv,6) pair
th

as the n entry in a sequence of these pairs, ordered with increasing
Mand N.

9. Proceed to step 10 if sufficient data has been obtained to analyze the
sequences. Otherwise, set n - n+ I and return to step 2 with
increased M and N. The current values of (v,6) will be used as
initial values for the next optimization process.

10. From analysis of the numerical sequences, select the (M,N) entry which
indicates the best numerical results. The corresponding (v,6) pair
yields E(r,8) which determines the material properties of the antenna

mesh. The matrix WMN(v, 6), when used in conjunction with (14), deter-

mines an approximation y MN of the shape of the antenna surface.

A convergence theory for the parameter estimation algorithm may be found
in [17]. Numerical results are described in the next section.

VI. Numerical Results

Experimental data for the Hoop/Column antenna is not available at
this time. Therefore simulated data is constructed to evaluate the pre-
ceeding algorithm.

As shown in Figure 2, the parent reflector has four separate areas
of illumination on its surface. Each separate area is assumed to have

the same parabolic shape given, for 0 < 8 < and e < r < R, by

,"
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u20 (R-r) q(e) +ij 0 < 836

(r,e)) q3(e) + 1 1_ e < e 17w(
R-36 <-- 36

uo(R-r)[k~)()i] 8

where

q1 (0) - sine + cose , (31)

a 2 2
a2 d 3 1 2 q, dq

q(e) .-- e _L)3 + _L-)2--~
d8 (32)

d2q 6(3-26 ) 36 d6 363 (3)

279936 2 d 2 q 1 dq

2 3 1 2592 de2  36 36 d6 363

a 3 17w 1 . 1d7w
2 177w).L 1 72d

q3(8 6 36 (8e--2)+ (e - -T6- d8j-)+36

S+ ql ( -, 17 (34)

279936 !w w2 dql (17) . dq 1 17w (17-v
3 3 q( ) 2592 de2  36 36 d8 (--)- 36( 3

The parameter k > 0, a stretch factor used to perturb the surface below
the conic (k - 0) shape, is taken as 0.25.

For the complete surface, we define, for e < r < R,

0
u (r,) 0 < w0<8<2

uO0(r, e -), < e <W
2- - (36)

u0 (re v) , < a < 3w

-2

0 3w 3w
u (r-< - e < 2w

'U , 1 , '" , / ' '* . "''' 'r "" . " " ' ' '' % " " • " " . % " "" " -." """ " " " " "



~12

H. T. BANKS, P. L. DANIEL AND E. S. ARMSTRONG

The cubic polynomial fits (32) and (34) are used to ensure smoothness in~ 3wr
0, in regions near 8 - W, Pv -- , 2w.

It is expected that the mesh will be stiffest near the outer hoop
(r - R) and around the inner radius (r - e). For this reason we choose a
known value of El(r) as

E(1 -(r) - 2T Tsinbw (R-c) j (e r < R) (37)

where T is a constant dependent on the mesh material. The stiffness in
the angular direction is expected to be uniform. Thus a known value of

E (e) is taken as

E2 (e) .T (38)

From data provided in [9), a reasonable value for ^ (given in units r/N7)
is

- 3.391 ; (39)

similarly, other parameters are estimated to be u0 - -7.5m, e - 8.235m,
and R- 50m.

S. A l0x 24 grid of data points um(riej) is calculated by determining u
at (riOj) where the values of 86 correspond to data taken along every

other radial cord truss system; the 10 values of ri are spaced uniformly

in (c,R). Distributed loads are obtained by substituting (36)- (38) into
(1) and evaluating for f(r,e). Equations (24) and (25) are used with
S1 - N1 - 4 to represent E1 (r)and E2 (8).

All numerical results presented were computed on the CDC 6600 at
Southern Methodist University. We would like to express our sincere
appreciation to David Krakosky at S.M.U. who assisted in the preparation
of data and graphical display of these results. The optimization scheme

mployed to minimize M is the IMSL version (ZXSSQ) of the Levenberg-
Marquardt algorithm [19], where we typically use default values of IMSL
parameters.

For each example reported, values of N are specified; in order
that N basis elements are used in both r and 8 directions, we take

M - N+ 1. Two measures of performance will be given in each case: (JM)
MN(which provides a good measure of state approximation) and RM  where,

using 1"1 to denote the L2 norm on [C,R] x [0,2w],

0MN I E M - E 0lOO0%

measures the relative error between the "true" parameter E and the

"optimal" parameter E associated with the (M,N) approximate parameter

[,,""" ""- "," "°.- ."-+.'.,,. "'.- . "- E .'''.. approximate """" d "P"" . .""J". " - .". . . parameter. • •"
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estimation problem. Throughout we choose a starting guess E0 for the
optimization procedure in the case of N-4; for N-8, 16, 24 and 30, pre-

vious converged values of P a e used as initial guesses. For example,

the initial guess for N-8 is E1 where -4.

Example : We estimate E2 (e) only, holding E1 (r) fixed at the true value
0E1 (r). The starting guess is E2 () " 1 + .5 cosG . Our results are sum-

marized below and in Figure 3.

* N O' jM CP time (sec.)

4 5.15% .609 5.41
8 5.72% .507 5.42

16 5.921 .514 21.58
24 5.95% .509 55.69
30 5.96% .502 172.99

Example 2: We now hold E2 (6) fixed, E2 (e) = E2 (e), and estimate E1 (r)

4 from the initial guess of E0  1 1. Our findings are outlined below and in
Figure 4. 1

N .MN (jM) CP time (sec.)

4 39.38% .551 12.22
8 4.19% .418 26.16

16 8.16% .419 67.11
24 8.85% .411 116.06
30 8.30% .401 228.02

Example 3: We estimate both E1 (r) and E2 (0). Initial guesses are given

by E (r) - 5 and E 2 () 1 - .2SsinO, respectively. In each case, the

first coefficient of E2 is held fixed.

N 0M,N (jMN)1 CF time (sec.)

4 42.10% .551 26.88
8 4.21% .418 36.24

16 8.17% .419 74.23
24 8.87% .411 190.83
30 8.29Z .401 206.02

We note (by comparing values of RM N for Examples 1 and 2) that we
have greater success here in estimating E2 (8) than E1 (r). This disparity

appears to be a function of the quantity and placement of sample data.
(See for example [17] where, by changing the data, we are able to better
estimate E1 than E2. In fact, in comparing the results of Example 2 with

* Table 6 in [17], it is easy to see how a different distribution of data



14

H. T. BANKS, P. L. DANIEL AND E. S. ARMSTRONG

for this example can actually reduce the values of 0M"N shown in Example 2

by one-half. Regardless of the differences in estimating E1 and E2 , how-

ever, we remark that in all examples we have been able to successfully
estimate the surface shape of the model antenna (as is evidenced by values

of JM, computed using 240 data points).
We have also obtained similar results in the case where random noise

(approximately 5% noise level) has been added to the data. These and
other findings are summarized in Section VI of [17.
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